H∞ Tracking Control of a Rigid Spacecraft

نویسندگان

  • Wencheng Luo
  • Yun-Chung Chu
چکیده

The attitude tracking control problem of a rigid spacecraft with external disturbances is addressed using the concept of extended disturbance and the inverse optimal control method. The proposed attitude tracking control law is inverse optimal with respect to a meaningful cost functional and the associated Lyapunov function satisfies a HamiltonJacobi-Isaacs partial differential equation. Hence, it is H∞ optimal with respect to the extended disturbance. The performance limitation of the H∞ inverse optimal PD control law is also analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...

متن کامل

Nonlinear Tracking Control of Rigid Spacecraft under Disturbance Using PD and PID Type $mathcal{H}_infty$ State Feedback

This study investigates six degrees-of-freedom nonlinear tracking control of rigid spacecraft under external disturbances. We propose two nonlinear tracking controllers having disturbance attenuation ability, namely, a proportionalderivative (PD)-type H∞ state feedback controller and a proportional-integral-derivative (PID)-type H∞ state feedback controller. Both these controllers have positive...

متن کامل

Design of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft

Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...

متن کامل

Near-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver

The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time opti...

متن کامل

Aiaa 98-4471 Tracking Rigid Body Motion Using Thrusters and Momentum Wheels

We develop tracking control laws for a rigid spacecraft using both thrusters and momentum wheels. The model studied comprises a rigid body with external thrusters and with N rigid axisymmetric wheels controlled by axial torques. The thruster torques and the axial motor torques are the controls used to track given attitude motions. Specifically, the thruster torques are used to implement the coa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004